

Introduction

Problem Stereo matching in foggy scenes is challenging as We extract features from left and right images to build a cost volume through warping the scattering effect of fog blurs the image and makes the W. We estimate atmospheric light L_{∞} and attenuation coefficient β from the left image matching ambiguous to render a series of images with different depth Z_i . The rendered images are concatenated to build fog volume, which is fused with cost volume for disparity Idea Prior methods mainly deem fog as a noise and discard estimation. it to improve matching results. Different from them, we propose to take advantage of fog and explore depth hints for stereo matching. **Motivation** During rendering, fog is accumulated along the light path between objects and camera following the ----physical atmospheric scattering process. When we render the image by reversing this process, fog is Left Image Fog Volume 3D Convolution removed within a selected depth range. Only the depth close to the real depth will lead to a clear image. In other Fusior words, the quality of the rendered image indicates the

correctness of depth used in the rendering. Extraction

FoggyStereo: Stereo Matching with Fog Volume Representation

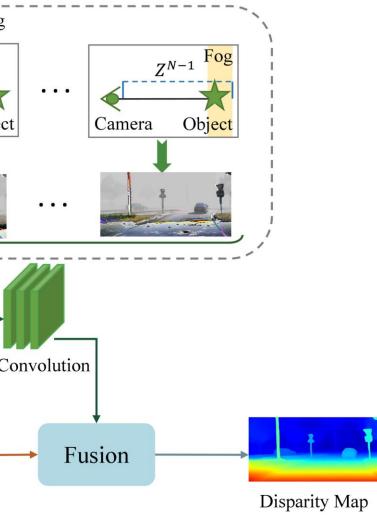
Chengtang Yao^{1,2}, Lidong Yu² ¹Beijing Laboratory of Intelligent Information Technology, Beijing Institute of Technology, ²Autonomous Driving Algorithm, NIO

Method

Fog Volume Representation

(1) Rendering The atmospheric scattering effect causes the attenuation of light reflected from objects L_t and the accumulation of environmental light L_c :

$$T(Z_{x}) = e^{-\int_{0}^{Z_{x}} \beta(z)dz} \\ L_{t}(x) = L_{\infty}\rho(x)T(Z_{x}) \\ L_{c}(x) = L_{\infty}\left(1 - T(Z_{x})\right) \right\} \Rightarrow I(x) = L_{t}(x) + L_{c}(x) \\ = J(x)T(Z_{x}) + L_{c}(x) + L_{c}(x)$$


The rendered image R is computed by reversing the atmospheric scattering:

$$R(x, Z_x^i) = \left(I(x) - L_{\infty}\left(1 - T(Z_x^i)\right)\right) / R(x, Z_x^i) = \ln(|I(x) - L_{\infty}|) + \int_0^{Z_x^i} \beta(z)$$

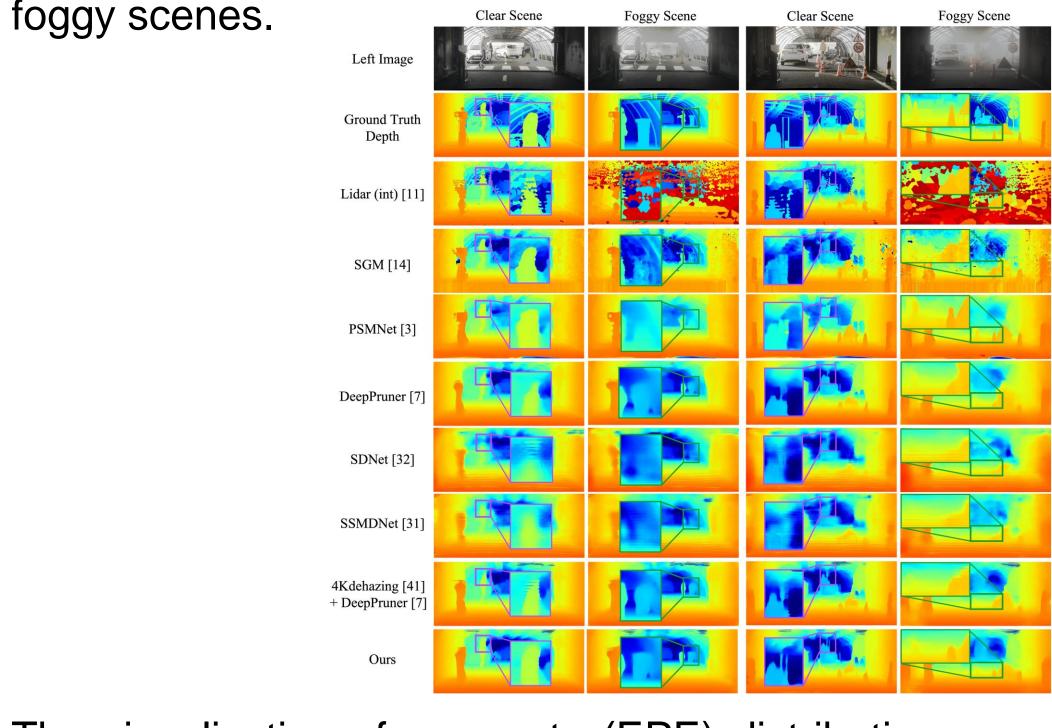
(2) Scattering Parameters Estimation We set L_{∞} and β as global parameters under the condition of one single light source and a homogeneous transporting medium. (3) Disparity Candidates Sampling We sample disparity candidates $\{D_x^i\}_{i=0}^{i=N-1}$ to construct cost volume, and convert them into depth $\{Z_x^i\}_{i=0}^{i=N-1}$ to build the fog volume. (4) Rendered Images Gathering We build the fog volume representation \mathcal{V}_f by stacking rendered images: $\mathcal{V}_f(x,Z) = [R(x,Z_x^0), R(x,Z_x^1), \cdots, R(x,Z_x^{N-1})].$

Fusion

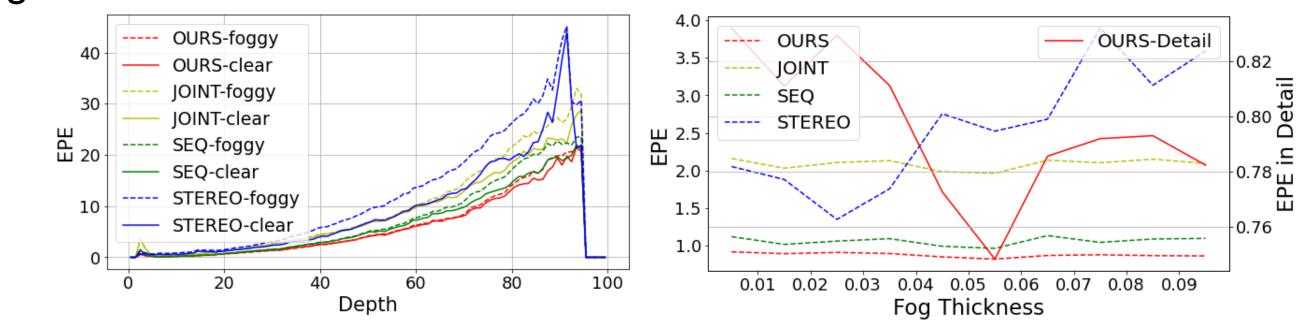
We fuse the cost volume and the fog volume with uncertainty σ which is the variance along disparity dimension: $\tilde{\mathcal{V}}(x, D_{\{i\}}) = [\sigma_c(x, D_i)\mathcal{V}_c(x, D_i), \sigma_f(x, D_i)\mathcal{V}_f(x, D_i)].$

 $\cdot L_{\infty}(1-T(Z_{\chi})).$

 $T\left(Z_{\chi}^{i}\right)$,


)dz .

The comparison of algorithms on SceneFlow dataset. We compare the results on clear data and foggy data. * represents our re-implementation results.


Testing	Metrics	Stereo		J	oint	Sequential	Ours
		PSMNet* [3]	DeepPruner* [7]	SDNet [32]	SSMDNet [31]	4Kdehazing [41] + DeepPruner [7]	
Clear	EPE	0.99	0.98	-	-	1.19	0.81
Clear	3px (%)	4.1	5.30	-	-	6.2	4.5
Foggy	EPE	1.27	3.77	2.68	2.23	1.49	1.04
	3px (%)	8.1	14.10	26.43	9.71	10.30	7.2

The comparison of algorithms on KITTI 2015 and 2012 datasets.

		KITTI 2015				KITTI 2012			
Methods		Foggy		Clear		Foggy		Clear	
		3px (%)	EPE	3px (%)	EPE	3px (%)	EPE	3px (%)	EPE
Stereo	PSMNet* [3]	1.3	0.54	1.0	0.49	3.3	0.84	3.3	0.86
Slereo	DeepPruner* [7]	3.7	0.88	8.8	1.66	4.3	0.94	5.0	1.09
Joint	SDNet [32]	13.4	1.73	-	-	11.0*	1.63*	10.7*	1.60*
	SSMDNet [31]	10.8	1.23	-	-	9.7*	1.55*	9.5*	1.53*
Sequential	4Kdehazing [41] + DeepPruner [7]	7.3	0.951	1.1	0.49	3.2	0.91	3.2	0.89
	ours	1.2	0.51	1.1	0.47	2.7	0.77	2.7	0.78

fog thickness.

Paper & Code

Results

The visualization of depth map on PixelAccurateDeth dataset with real

The visualization of error rate (EPE) distribution over the depth and the